Hierarchical Model for Long-term Video Prediction
نویسندگان
چکیده
Video prediction has been an active topic of research in the past few years. Many algorithms focus on pixel-level predictions, which generates results that blur and disintegrate within a few frames. In this project, we use a hierarchical approach for long-term video prediction. We aim at estimating high-level structure in the input frame first, then predict how that structure grows in the future. Finally, we use an image analogy network to recover a realistic image from the predicted structure. Our method is largely adopted from the work by Villegas et al.[10] The method is built with a combination of LSTMs and analogy-based convolutional auto-encoder networks. Additionally, in order to generate more realistic frame predictions, we also adopt adversarial loss. We evaluate our method on the Penn Action dataset, and demonstrate good results on high-level long-term structure prediction.
منابع مشابه
Learning to Generate Long-term Future via Hierarchical Prediction
We propose a hierarchical approach for making long-term predictions of future frames. To avoid inherent compounding errors in recursive pixellevel prediction, we propose to first estimate highlevel structure in the input frames, then predict how that structure evolves in the future, and finally by observing a single frame from the past and the predicted high-level structure, we construct the fu...
متن کاملShort Term Prediction of Highway Travel Time Using Data Mining and Neuro-fuzzy Methods
We show that prediction of travel time on a 28-km long highway section based on on-line travel time measurements with video is practicable by data mining and neuro-fuzzy methods. We introduce two new prediction models. The first one is a result of GUHA style data mining analysis and Total Fuzzy Similarity method, and the second one is a hierarchical model based on neuro-fuzzy modelling. Compari...
متن کاملO13: Common Pitfalls in Pediatric Long-Term Video-EEG Monitoring
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملHierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction
As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1706.08665 شماره
صفحات -
تاریخ انتشار 2017